Inheritance of Isomorphism Conjectures under colimits
نویسنده
چکیده
We investigate when Isomorphism Conjectures, such as the ones due to Baum-Connes, Bost and Farrell-Jones, are stable under colimits of groups over directed sets (with not necessarily injective structure maps). We show in particular that both the K-theoretic Farrell-Jones Conjecture and the Bost Conjecture with coefficients hold for those groups for which Higson, Lafforgue and Skandalis have disproved the Baum-Connes Conjecture with coefficients.
منابع مشابه
9 M ay 2 00 7 Inheritance of Isomorphism Conjectures un - der colimits Arthur Bartels , Siegfried Echterhoff and Wolfgang Lück
We investigate when Isomorphism Conjectures, such as the ones due to BaumConnes, Bost and Farrell-Jones, are stable under colimits of groups over directed sets (with not necessarily injective structure maps). We show in particular that both the K-theoretic Farrell-Jones Conjecture and the Bost Conjecture with coefficients hold for those groups for which Higson, Lafforgue and Skandalis have disp...
متن کاملCanonical Selection of Colimits
Colimits are a powerful tool for the combination of objects in a category. In the context of modeling and specification, they are used in the institution-independent semantics (1) of instantiations of parameterised specifications (e.g. in the specification language CASL), and (2) of combinations of networks of specifications (in the OMG standardised language DOL). The problem of using colimits ...
متن کاملEvery class of $S$-acts having a flatness property is closed under directed colimits
Let $S$ be a monoid. In this paper, we prove every class of $S$-acts having a flatness property is closed underdirected colimits, it extends some known results. Furthermore thisresult implies that every $S$-act has a flatness cover if and only if it has a flatness precover.
متن کاملOn the Monadicity of Categories with Chosen Colimits
There is a 2-category J -Colim of small categories equipped with a choice of colimit for each diagram whose domain J lies in a given small class J of small categories, functors strictly preserving such colimits, and natural transformations. The evident forgetful 2-functor from J -Colim to the 2-category Cat of small categories is known to be monadic. We extend this result by considering not jus...
متن کاملOn Sifted Colimits and Generalized Varieties
Filtered colimits, i.e., colimits over schemes D such that D-colimits in Set commute with finite limits, have a natural generalization to sifted colimits: these are colimits over schemes D such that D-colimits in Set commute with finite products. An important example: reflexive coequalizers are sifted colimits. Generalized varieties are defined as free completions of small categories under sift...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007